AI将如何赋能医学影像发展?
2021年09月01日 | 点击数:2974 | 【
大】【
中】【
小】
近年来,随着技术在医学影像诊断领域的渗透,以及医疗创新相关政策的鼓励,致力于提升医疗机构服务水平的医学影像新业态开始崭露头角,尤其是以AI医学影像产品为代表的诊断服务,成为当前医学影像发展热点。
那么,AI是如何赋能医学影像发展的?
AI医学影像产业链分析
AI医学影像属于高端医疗器械领域,具有多学科交叉、知识密集、附加值高等特点,其产业链各环节涉及基础工业、制造业、影像学、医疗机构、互联网等多个行业。当影像数据积累到一定规模,影像产业链可延伸至人工智能领域,出现影像智能诊断应用,其反向作用于影像诊断设施及服务。
产业链上游是影响医学影像发展的一些相关行业,例如化工、金属、互联网、通讯等行业,其技术进步将推动医学影像行业发展或变革。核心元器件是医学影像设备上游供应链环节中的命脉,其发展情况决定着行业的技术高度。目前,我国大部分医学影像设备生产商均不具备核心元器件自主研发生产能力,各类零部件基本依靠外购自不同厂商,整机生产过程实际为组装集成过程。当核心元器件价格上涨时,将直接增加行业内企业的总体生产成本,缩短盈利空间。因此,是否拥有核心元器件的自主生产能力以及相对于上游供应商的议价能力成为区分医学影像设备制造企业竞争力强弱的关键。
中游是开展医学影像诊断服务的基础设施,包括医学影像成像设备和影像信息化。目前此领域的市场规模最大。
下游涉及各级医疗机构与衍生服务机构。各级医疗机构包括公立医院、民营医院、远程影像平台及独立影像中心。衍生服务机构包括维修托管公司与医疗器械租赁机构。公立医院是医学影像设备企业的主要客户,线上影像平台及独立影像中心则是未来市场主要增长力量。
公立医院与民营医院:因医学影像设备造价高,折旧慢,三级公立医院设备更新需求不强,近年来市场趋于饱和。为提升基层医疗卫生服务能力,“分级诊疗”政策在各地的实施将刺激来自基层医疗机构的设备采购需求,具有价格优势的国产制造商将凭借政策红利脱颖而出。同时,在国家鼓励社会办医的背景下,数量保持稳定增长的民营医院急需性价比高的医学影像设备,为本土企业质优价廉的中低端医学影像设备提供了机遇。
独立影像中心:中国优质医疗资源集中于三级医院,分配严重不均,独立影像中心可以实现优质医疗资源的整合分配。受制于政策、成本等因素,部分基层医疗机构没有配置大型医学影像设备的能力,难以满足临床需求。独立影像中心可以减轻三级医院负荷,提高基层医疗机构服务能力,解决现阶段中国医学影像服务的痛点,帮助医学影像服务行业快速发展。在政策的鼓励下,独立影像中心迎来发展机遇。
现阶段中国独立影像中心市场尚处于初步发展阶段,未来伴随各种慢性疾病患病率的增长、老年人口数量的上升等因素,市场发展空间广阔。独立影像中心属于重资产模式,需要大量采购医学影像设备,独立影像中心行业的爆发将驱动医学影像设备行业的发展,成为未来中游行业增长的关键因素。
线上影像平台:线上影像平台通过云服务平台提供远程阅片服务,将专家与患者需求对接,同时提供影像诊断培训、资讯等的线上学习平台等服务。在患者巨大影像检查需求的推动下,依托于云计算、大数据等新技术,线上影像平台在近三年成长迅速。尽管线上影像平台属于轻资产模式,不附带影像设备,但其弥补了大医院影像科人手不足的问题,提高了影片诊断效率,促进了下游市场的消费需求,中游市场将在一定程度上因此受益。
衍生服务机构:近五年来,医学影像设备市场的增长促进了下游服务机构的兴起,相关服务机构陆续衍生出新的服务模式,维修托管公司及医疗器械设备租赁商应运而生。维修托管公司的出现降低了影像学设备的整体维修成本,具有取代整机制造商服务模块的趋势;医疗器械设备租赁商可以帮助解决医疗机构资金短缺的困境。新模式的加入延伸了产业链,隐形增加了中游环节的价值,扩大了整体产业的规模。
AI医学影像发展瓶颈
数据是AI医学影像所需的核心资源,仅掌握算法而缺乏足够数量和质量的数据无法获得较好的训练效果。目前,医学影像人工智能数据生产环节存在较多的问题亟待解决。
一是缺乏有效的标准训练数据。同其他行业相比,医学影像高质量数据获取方面有着天然的劣势:一方面,高质量影像数据集中在三甲医院,不同医疗机构的数据很少能够实现共享,缺乏有效的数据互通机制;另一方面,中国虽然医疗数据量特别庞大,但其中80%的数据均是非结构化数据,限制了人工智能在医学影像行业的进一步应用。此外,训练数据集应根据适用范围包含体检、筛查、门诊和实验室等不同场合的图像,使用的设备、设置、剂量能够代表不同地区不同条件的实际水平,目前国内尚无规范化设计的有效数据库。
二是缺乏统一的行业标准。由于监督学习的技术本质,算法训练与产品测试使用的数据集对全生命周期的质量控制和风险管理有着重要意义。在获取数据的基础上,深度学习结合先验知识对模型进行训练,训练集需要事先标注。不同机构数据质量和规模参差不齐,由于缺乏统一的标注扫描技术及处理手段、行业统一标准和共识,易引起产品质量风险和“水土不服”,亟需加强引导和规范。应加强训练数据集标注者队伍的资质,统一图像征象认识、标注方法、分割方法、量化方法等,避免产品在实际应用过程中存在较大偏差。
三是竞争格局分散,以初创型公司为主。目前医疗影像行业下游参与者众多,竞争格局分散,未来在场景+数据+算法上有优势的企业在智能诊断市场将更有优势。根据火石创造《2017年中国医学影像产业图谱》数据显示,我国医疗影像行业下游参与者众多,包括医学影像信息系统(相关公司209家,市场规模较小)、远程影像服务(相关公司90家)、独立影像中心(相关公司14家)、医学影像+人工智能(相关公司23家)。远程影像服务是近两三年才推出来的,初创型企业占多数,而且90家相关企业中,以医学影像信息系统的厂商居多,单纯只做远程影像的诊疗系统的公司比较少。医疗影像中心也是近年才开始推出的,市场基本上是从零起步,其中我国涉及独立影像中心只有10家,其他的是和医院或者医联体合作建立医学影像中心。
四是缺乏有效的保护和监管。各家医疗单位的数据不愿开放和分享,很大程度上是基于信息安全的因素。目前没有法律规定何种数据可以开放使用,数据的归属和伦理问题尚不明确。同时,数据的使用缺乏有效的保护和监管机制。解决上述问题有几种途径:首先,加强行业法律法规的制定;其次,公司数据库的图像质量应该标准化,同时可溯源;再次,通过合理的数据分享机制,建立标准化、大样本的数据中心,为人工智能提供适合训练的高质量数据,使其在医疗领域的应用具备更多的可能性。
AI医学影像未来发展趋势
人工智能对行业升级的作用将更加显著
医疗行业数据量迅速增长,加速了人工智能医学影像的产品技术优化,推动人工智能医学影像行业的升级,由于人工智能可在数据中进行复杂模式的识别,并以自动化方式提供定量评估,人工智能医学影像在临床工作流程中,可为医生提供辅助,有助于形成更准确的放射学评估。
基于技术类别,人工智能在医学影像领域衍生出两大基础应用:(1)数据感知,即通过图像识别技术对医学影像进行分析,获取有效信息;(2)数据训练,即通过深度学习海量的影像数据和临床诊断数据,不断对模型进行训练,促使其掌握诊断能力。
人工智能医学影像对比传统医学影像的优势明显,因此产品面世早期,广受各级医疗机构青睐,医生对人工智能医学影像设备的使用需求不断提升,人工智能医学影像行业因此发展前景广阔。目前,中国有超过百家企业将人工智能应用于医疗领域。
人工智能医疗应用领域中,医学影像是投资金额最高、投资轮次最多、应用最成熟的热门领域,资本市场对人工智能医学影像的高度认可与大力支持,将会加速相关技术成熟与应用场景落地,助推医学影像设备产业转型升级。
市场发展初期相对分散,未来有望逐步走向集中
当前AI医学影像市场比较分散,原因主要有:一是数据分散。我国第三方医学影像中心大多数医疗影像数据来源于医院,但大量影像数据额分散在不同的三级医院体系中,因此智能医学影像模型难以得到有效的训练,即使实验室准确率高,也很难在实际应用中取得很好的效果。二是病种分散。虽然底层代码可以复用,但不同病种需要不同的标注数据训练不同的模型。例如:谷歌Deepmind跟Moorfields眼科医院合作训练糖尿病视网膜病变识别;阿里与万里云合作进行肺结节CT影像检测,未来有望扩大到乳腺癌、糖尿病等领域。虽然行业参与的公司着力选择多发病种进行产品研发,但不同病种不同模型的特点,决定了行业发展初期参与者相对分散的形态。三是变现场景、商业模式多样化。仅就医疗图像智能识别而言,潜在的变现方式包括:作为单独的软件模块向医疗机构销售、与PACS等系统合成向医疗机构销售;与CT、X光机等设备合作形成软硬件一体化解决方案向医疗机构销售;通过远程医疗等方式服务基层医疗机构;通过互联网医疗等方式直接服务于患者。由于场景和商业模式的多样化,不同公司在不同赛道上发展。
然而,随着行业的发展,市场参与者的数量将不断提升,最后由分散走向集中。随着行业数据整合与共享机制的建立、模型训练的成熟、商业模式的确立,以及部分产品的获批,先发企业将逐步建立技术壁垒和商业壁垒,推动市场走向集中。
(来源:中国食品药品网)